OKOUNKOV BODY AND ITS VOLUME
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ABSTRACT

Let D be a big divisor on a projective variety X of dimension d. In this paper, we
will investigate its Okounkov body, which is a compact convex set of R? whose
volume encodes the asymptotic behavior of hilbert series associated to the global
sections ring R(D) = @,y H*(X, Ox(mD)). This construction later will be
generalized to a N°-graded linear series W, C R(Dq, ..., Dp).

Keywords Hilbert series - Okounkov body - Graded linear series

1 Construction of the Okounkov body

In this section, we present the classical construction of the Okounkov body associated with
a big divisor, refer to [LMO9].

The Okounkov body is a compact convex set designed to study the asymptotic behavior of the
complete linear series H(X, Ox(mD)) as m — oo. Although we will see that Okounkov’s
construction works for incomplete linear series as well.

Definition 1.1. Given an irreducible variety X of dimension d. An admissible flag Y, over
X of length [ < d is defined as a flag of irreducible subvarieties

Yo : X =Y 2Y12Y,2---2Y,12Y,
where codimx (Y;) = i and each Y; is non-singular at a general point of V;.

Notation 1.2. Throughout this paper, we will fix an admissible flag Y, over an irreducible
variety X of dimension d. Moreover, when we talk of a divisor, we refer to an integral
Cartier divisor.

Definition 1.3 (Valuation attached to a flag). Consider a big divisor D on X. A function
V=Vy, =Vy,D: HY (X, Ox(D)) — 7 U {OO}
s v(s) = (1/1(8), . ,Vd(s))

is called valuation-like if it satisfies
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(1) vy,(s) = oo if and only if s = 0.
(ii) Ordering Z¢ lexicographically, one has
vy, (s1 + s2) = min {l/y. (s1), vy, (32)}
for any non-zero sections s1,s2 € H (X, 0x(D)).
(iii) Given non-zero sections s € H (X,0x (D)) and t € H® (X, Ox(E)),
V.. D+E(s ® 1) = vy, ,(s) + vy, B(1).

Such function would exists, the plan is to produce v;(s) inductively by restricting to each
subvariety in the flag, and considering the order of vanishing along the next smallest.
Specifically, given 0 # s € H°(X,Ox (D)) and set

v1 = v1(s) = ordy, (s).

Next, choose a local equation for s on an open neighborhood U C X which determines a
section
51€ H' (V1N U, Oy,ny(D — 1iY1))

that does not vanish identically along Y7, and so we get by restricting a non-zero section
S1 = §1|y1 € HO(Yl, Oyl (D — 1/1Y1)).
Then take
vy = 15(s) = ordy,(s1).
Inductively, for i < &, one has constructed non-vanishing sections
S; € HO (Yi7OYi<D —Y —wmYy—... . — VZYZ)> ,

with ;11 = ordy, , (s;). Choosing a local equation for s on an open neighborhood U C Y},
yields a section

Sk+1 € HO(Y]H_l NU, OUﬂYk+1<D —1Y1 — Yy — ... — Vk;Yk) & OYk+1(_Vk+1Yk+1))
not vanishing along Y; ;. Then take
Skt = Sk1fvins € H(Yir1, Oy, (D = 1Y1 — 10 — .. — 11 Vi)

to continue the process. We then get the values v(s) € N that do not depend on the choice of
local equation 3;. It is immediate that properties (i) — (ii1) are satisfied.

It follows from the valuation-like properties of vy, that the valuations vy, (s) along with their
gradings form an additive semigroup in N x N. We will make this precise:

Definition 1.4. The graded semigroup of D is the sub-semigroup
L(D) =Ty,(D) = {(.(s),m) | 0 # s € H'(X,Ox(mD)),m > 0}

of N¢ x N = N9*+1, We also consider I'(D) as a subset of Z4*+! C R4+,
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Definition 1.5. Writing I' = I'(D) and denote ¥(I") C R%*! for the closed convex cone with
vertex at the origin spanned by I'. The Okounkov body A(D) of D is then the base of this
cone, that is

A(D) = Ay, (D) = £(I) N (R? x {1}).

Proposition 1.6. Let
I'(D)n = Im(H(X,0x (mD) \ {0} & Z%),

then we have another interpretation for Okounkov body

A(D) = Conv | | ] %F(D)m C R%

m>=1

Example 1.7. On X = P, let Y, be the flag of linear spaces defined in homogeneous
coordinates Tp,..., T, by Y; = {Th = ... = T; = 0} and take L = Opa(1). The global
sections H(PY, O(m)) correspond to homogeneous polynomials of degree m in d + 1
variables. Then vy, is the lexicographic valuation determined on monomials by

I/)/'.(T(?OTlal...ng) = (al,...,ad).

Since
(L) = {(a,...,aq) ENd|a1+...—l—ad:m—ao, ap € N},
the normalized points %F(L)m are the points lie in the standard simplex of R?

(e €RY [+ ag <}

Moreover, %F(D)m contains the standard basis by setting ag = 0. This shows that A(D) is
exactly the standard simplex of R,

Remark 1.8. For arbitrary divisors D it can happen that A(D) C R¢ has empty interior, in
which A(D) isn’t actually a convex body. For instance, take zero divisor D = 0, then A(D)
consists of single point. However we will be almost exclusively interested in the case when
D is big, and then int(A(D)) is indeed non-empty.

Lemma 1.9. Let W C H(X, Ox (D)) be a subspace. Fix a = (a1, ..., aq) € Z% and set
W>a:{s€W|vy.(s)>a}, W>a:{s€W|vy_(s)>a}.
Then
dim(Wsq/Wsa) < 1.
In particular, if W is finite dimensional then
#Im(W \ {0} & Z%) = dim W.

That is the number of valuation vectors arising from sections in W is equal to the dimension
of W.
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2 Volume of Okounkov body

Definition 2.1. Let L be a line bundle on X. The support of L consists of those non-negative
powers of L that have a non-zero section:

N(L) = ={m>0[H(X,L®™) #0}.
The semigroup N(X, D) of a d1V1s0r D is defined analogously with a line bundle L = Ox (D).

Definition 2.2 (Volume of a divisor). Let L be a line bundle on X. The volume of L is
defined to be the non-negative real number
0 m
vol(L) = volx (L) = limsup h (XC; Lo
m—00 m / n!
The semigroup N(X, D) and volx (D) of a divisor D is defined analogously with a line
bundle L = Ox (D). Moreover, the divisor D on X is called big if there is a constant C' > 0
such that
W(X,0x(mD)) = C -m?
for all sufficiently large m € N(X, D). That is, the lim sup above is in fact a limit
. KX, 0(mD
so(0) = iy =0

(D

Definition 2.3. Given any semigroup I' C N%+!, set
> = 3(I") = closed convex cone (I') C R4+,
A=A =N R x {1}).
Moreover for m € N, put
I, =N (N? x {m}),
which we view as a subset N?. We do not assume that I' is finitely generated, but we will
suppose that it satisfies three conditions

(@) Iy = {0} e N¢,
(b) 3 finitely many vectors (v;, 1) spanning a semigroup B C N%+1 such thatT' C B.

(c) T generates Z4*! as a group.

Proposition 2.4. Assume that I" satisfies above conditions. Then

lim 1M olel(A),

m—00 md
where volga denotes the standard Euclidean volume on R¢,

Proof. The number of integral lattice points inside mA can be regard as a polynomal with
respect to m € N, called the Ehrhart polynomial. Its leading coefficient of degree d is the
volume of A [BRS15, Lemma 3.19], that is
. #(mANZY
lim ———=

m—o0 md

= vol(A).
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And since
T, C mANZY
it follows that

r
#lm < volpa(A).

lim sup pi

m—oo M
For the reverse inequality, assume to begin with that I' is finitely generated. Khovanskii
[Kho92, Proposition 3] shows that in this case there exists a vector vy € I' such that

(T4 NN+ T,
here one uses that I' generates Z4*! as a group. But
L #HE ) 0 (N x {m))

m—o0 md

= VOle (A),

and hence

lim inf #F(;n = volga (D). 2)
m—oo M
This proves the theorem when T' is finitely generated.
In general, choose finitely generated sub-semigroups
r‘cr?c...cr,
each satisfying (a) — (b), in such a manner that UT"* = T". Then #I,,, > #(I"%),,, for all m € N.
Writing A? = A(T), it follows by applying (2)) to I' that

T .
lim inf #_;n > volga(AY)
m—oo M

for all i. But volgs — volg«(A) and so (2)) holds for T" as well. []

Lemma 2.5. If D is any big divisor on X, then the graded semigroup
I' =Ty, (D) C Nit!

associated to D satisfies the three conditions (a) — (b).

Proof. See [LMO09, Lemma 2.2]. ]
Theorem 2.6. Let D be a big divisor on a projective variety X of dimension d. Then
1
volga(A(D)) = T volx (D). 3)

Proof. LetT' =T'(D) be the graded semigroup of D with respect to Y,. Thanks to Lemma
[2.5] we can apply Proposition[2.4]and hence
volga (A(D)) = lim M

m—00 md

On the other hand, it follows from [1.9]that #T'(D),,, = h°(X, Ox(mD)). By the definition at
(D), the limit on the right computes = volx (D). O
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Example 2.7. Continuing the Example the fact that A(D) is the standard simplex of
dimension d helps us compute directly the geometric volume of A(D)

volga(A(D)) = volume of standard d-simplex = o

For the right hand side of (3]), we know that

m+d md
KP4 O(m)) = ( y ) ~

Therefore volyx (D) = 1.
Proposition 2.8. Let D be a big divisor on X.
(1) For a fixed natural number a > 0,
vol(aD) = avol(D).
(11) Fix any divisor N on X and any ¢ > 0. Then there exists an integer po such that
%‘VOI(}?D —N) — Vol(pD)‘ <€
for every p > po.

Proof. See [Laz04, Proposition 2.3.35]. ]

Definition 2.9. (i) A Q-divisor D on X is an element of Divg(X) := Div(X) @z Q. We
represent a D as a finite sum
D= Z CiAi

where ¢; € Q and A; € Div(X). By clearing denominators, we can also write D = cA
for a single rational number ¢ and integral divisor A.

(i1) D is called effective if ¢; > 0 and A; effective.
(ii1) D is called big if there is a positive integer m > 0 such that m D is integral and big.
(iv) Two Q-divisors Dy, D- are numerically equivalent, written

D1 =num D2

if (D1 - C) = (D3 - C) for every curve C C X. We denote by N'(X)g for Q-vector
space of numerical equivalence classes of (Q-divisors. One can show that there is an
isomorphism

N'(X)g=N'(X)®Q.

(v) D is called ample if ¢; € Q4 and A; is an ample Cartier divisor. Equivalently, D is
ample if there is a positive integer » > 0 such that r - D is integral and ample.

(vi) We call ¢ € N1(X )o an effective (big, ample) class if the representative element is
effective (big, ample).
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Definition 2.10 (Volume of (Q-divisor). One can define volume of D by taking lim sup over
m for which mD is integral. However it would be quicker to choose some a € N(D) for
which aD is integral, then set

vol(D) = id vol(aD).
a
It follows from Proposition [2.§] (i) that this is independent of the choice of a.
Remark 2.11. Lazarsfeld and Mustata [LMO9, Proposition 4.1] showed that the construction
of Okounkov body does not depend on the integral numerical equivalence class. Moreover,

if we regard A(_) as a function on Div(X), then A(_) satisfies homogenity condition. That
1s, given a big divisor D on X and an integer p > 0, one has

A(pD) = pA(D).
Therefore the Okounkov body A(¢) is well defined for any big rational class ¢ € N(X)qg by
setting
A(§) = 2 A(pD) C B! )
where D is a big Q-divisor representing ¢ and p > 0 is an integer large enough so that pD
integral.

Proposition 2.12. For any big class ¢ € N*(X)g, we have

1

volga(A(€)) = — volx (€).

Proof. Choose a Q-divisor D representing ¢ and an integer p such that pD integral. From
the definition of A(¢),

1
VOl(A() = 5 vol(A(D).
Also by the definition of volume of Q-divisor and Theorem
1 d!
volx (§) = EVOIX(])D) = ﬁVle(A(pD)).
The assertion now follows. ]

Definition 2.13. Analogously, one can defines R-divisor be a element of Divg(X) =
Div(X) ® R. Write D as a finite sum )  ¢;A; where ¢; € R and A; € Div(X). Itis
numerically trivial if and only if > ¢;(4; - C) = 0 for every curve C' C X. The resulting
space of equivalence classes is denoted by N'(X ). We also has an isomorphism

N{(X)r =N'(X)oR.
Definition 2.14. The big cone Big(X) C N'(X)g is the convex cone of all big R-divisor

classes on X. The pseudoeffective cone Eff(X) C N!(X)g is the closure of the convex
cone spanned by the classes of all effective R-divisors.
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Theorem 2.15. The big cone is the interior of the pseudoeffective cone and the pseudoet-
fective cone is the closure of the big cone:

Big(X) = int(Eff(X)), Eff(X) = Big(X).

Lemma 2.16. The pseudoeffective cone of X is pointed, i.e. if 0 # ¢ € Eff(X) then
—¢ € Eff(X).

3 Volume associated to a N?-graded linear series

Fix divisors Dy,...,D, on X whose classes form a Z-basis of N*(X). We may further
choose {D;} so that their classes are in Eff(X). The choice of the {D;} determines identifi-
cations

NYX)=7ZF, NYX)r=Rr.
Observe that under this isomorphism, Eff(X) lies in Rgo. Given a vector d € N”, we write
@-D=aDi+...+a,D,for D= (Dy,...,D,).

Definition 3.1. An N”-graded linear series W, on X associated to D consists of finite
dimensional subspaces
Wz € HY(X, Ox(a- D).

for each @ = (a1, --- ,a,) € N” such that

i) Wy =C.

(i1) Wg, - W@’Q - W51+&'2 for all @y, a, € N7,
The product in (i1) denotes the image of W;: ® W under the homomorphism

H°(X,0x(di - D)) ® H(X,Ox (a3 - D)) — H°(X,Ox((di + a3) - D)).

Thus, above conditions is equivalent to the condition that R(W,) = &Wj; be a graded
C-subalgebra of the section ring

R(D) = @ H(X,0x(a - D)).
aeNr

We define the support Supp(W,) C R” of W, as the closed convex cone spanned by all
a € N” such that W3 # 0.

Definition 3.2. The N?-graded semigroup of 1, with respect to a flag Y, is the additive
sub-semigroup of N¢ x N given by

D(Wa) = {(v(s).@) |0 # s € Wy}
Now let X(17,) C R¢ x R” be the closed cone spanned by I'(1,) and set
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Definition 3.3. For an N*-graded linear series W, on X and @ € N”, we define the volume
function volyy, : N — R of W, as

volyy, (@) = lim sup —dlmg(wk'a)

With the help of convex geometry and semigroup theory, Lazarsfeld and Mustata [LMO9,
Corollary 4.20] show that the formal properties of the global volume function persist in
the multigraded setting under very mild hypotheses. Precisely the function @ — volyy, (@)
extends uniquely to a continuous function

volyy, @ int(Supp(We)) — R
which is homogeneous, log-concave of degree d.

Definition 3.4. Let « € N°. An Nf-graded linear series W, on X has bounded support
with respect to @ if

Supp(We) N {l;| b= 1}
is bounded. The Reeb cone of N”-graded linear series W, on X is

C— {a e N | (@,5), V5 € Supp(Wa) \ {0}} .

A vector @ € C is called Reeb vector field. For such (1/,, @) where d is a Reeb vector field,
we set

—

WO(Winge) = Y dim(Wy)

for each m € N, it is a finite sum if W, has bounded support. Finally, we define the volume
of W, as

hO(Wmd’o)
1a(Wa) = 1i L .
volg(W,) S Tt p— 1]
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