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ABSTRACT

Let D be a big divisor on a projective variety X of dimension d. In this paper, we
will investigate its Okounkov body, which is a compact convex set of Rd whose
volume encodes the asymptotic behavior of hilbert series associated to the global
sections ring R(D) =

⊕
m∈N H

0(X,OX(mD)). This construction later will be
generalized to a Nρ-graded linear series W• ⊆ R(D1, . . . , Dρ).
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1 Construction of the Okounkov body

In this section, we present the classical construction of the Okounkov body associated with
a big divisor, refer to [LM09].

The Okounkov body is a compact convex set designed to study the asymptotic behavior of the
complete linear series H0(X,OX(mD)) as m → ∞. Although we will see that Okounkov’s
construction works for incomplete linear series as well.

Definition 1.1. Given an irreducible variety X of dimension d. An admissible flag Y• over
X of length l ⩽ d is defined as a flag of irreducible subvarieties

Y• : X = Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ Yl−1 ⊇ Yl,

where codimX(Yi) = i and each Yi is non-singular at a general point of Yl.

Notation 1.2. Throughout this paper, we will fix an admissible flag Y• over an irreducible
variety X of dimension d. Moreover, when we talk of a divisor, we refer to an integral
Cartier divisor.

Definition 1.3 (Valuation attached to a flag). Consider a big divisor D on X. A function

ν = νY• = νY•,D : H0
(
X,OX(D)

)
−→ Zd ∪ {∞}

s 7−→ ν(s) =
(
ν1(s), . . . , νd(s)

)
is called valuation-like if it satisfies
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(i) νY•(s) = ∞ if and only if s = 0.

(ii) Ordering Zd lexicographically, one has

νY• (s1 + s2) ⩾ min
{
νY• (s1) , νY• (s2)

}
for any non-zero sections s1, s2 ∈ H0

(
X,OX(D)

)
.

(iii) Given non-zero sections s ∈ H0
(
X,OX(D)

)
and t ∈ H0

(
X,OX(E)

)
,

νY•,D+E(s⊗ t) = νY•,D(s) + νY•,E(t).

Such function would exists, the plan is to produce νi(s) inductively by restricting to each
subvariety in the flag, and considering the order of vanishing along the next smallest.
Specifically, given 0 ̸= s ∈ H0(X,OX(D)) and set

ν1 = ν1(s) = ordY1
(s).

Next, choose a local equation for s on an open neighborhood U ⊆ X which determines a
section

s̃1 ∈ H0(Y1 ∩ U,OY1∩U (D − ν1Y1))

that does not vanish identically along Y1, and so we get by restricting a non-zero section

s1 = s̃1|Y1
∈ H0(Y1,OY1

(D − ν1Y1)).

Then take
ν2 = ν2(s) = ordY2

(s1).

Inductively, for i ⩽ k, one has constructed non-vanishing sections

si ∈ H0
(
Yi,OYi

(D − ν1Y1 − ν2Y2 − . . .− νiYi)
)
,

with νi+1 = ordYi+1
(si). Choosing a local equation for s on an open neighborhood U ⊆ Yk

yields a section

s̃k+1 ∈ H0(Yk+1 ∩ U,OU∩Yk+1
(D − ν1Y1 − ν2Y2 − . . .− νkYk)⊗OYk+1

(−νk+1Yk+1))

not vanishing along Yk+1. Then take

sk+1 = s̃k+1|Yk+1
∈ H0(Yk+1,OYk+1

(D − ν1Y1 − ν2Y2 − . . .− νk+1Yk+1)).

to continue the process. We then get the values ν(s) ∈ N that do not depend on the choice of
local equation s̃i. It is immediate that properties (i) − (iii) are satisfied.

It follows from the valuation-like properties of νY• that the valuations νY•(s) along with their
gradings form an additive semigroup in Nd ×N. We will make this precise:

Definition 1.4. The graded semigroup of D is the sub-semigroup

Γ(D) = ΓY•(D) = {(νY•(s),m) | 0 ̸= s ∈ H0(X,OX(mD)),m ⩾ 0}

of Nd ×N = Nd+1. We also consider Γ(D) as a subset of Zd+1 ⊆ Rd+1.
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Definition 1.5. Writing Γ = Γ(D) and denote Σ(Γ) ⊆ Rd+1 for the closed convex cone with
vertex at the origin spanned by Γ. The Okounkov body ∆(D) of D is then the base of this
cone, that is

∆(D) = ∆Y•(D) = Σ(Γ) ∩ (Rd × {1}).

Proposition 1.6. Let

Γ(D)m = Im(H0(X,OX(mD) \ {0} ν−→ Zd),

then we have another interpretation for Okounkov body

∆(D) = Conv

⋃
m⩾1

1

m
Γ(D)m

 ⊆ Rd.

Example 1.7. On X = Pd, let Y• be the flag of linear spaces defined in homogeneous
coordinates T0, . . . , Td by Yi = {T1 = . . . = Ti = 0} and take L = OPd(1). The global
sections H0(Pd,O(m)) correspond to homogeneous polynomials of degree m in d + 1

variables. Then νY• is the lexicographic valuation determined on monomials by

νY•(T
a0

0 T a1

1 . . . T ad

d ) = (a1, . . . , ad).

Since
Γ(L)m = {(a1, . . . , ad) ∈ Nd | a1 + . . .+ ad = m− a0, a0 ∈ N},

the normalized points 1
mΓ(L)m are the points lie in the standard simplex of Rd{

(x1, . . . , xd) ∈ Rd | x1 + . . .+ xd ⩽ m
}
.

Moreover, 1
mΓ(D)m contains the standard basis by setting a0 = 0. This shows that ∆(D) is

exactly the standard simplex of Rd.

Remark 1.8. For arbitrary divisors D it can happen that ∆(D) ⊆ Rd has empty interior, in
which ∆(D) isn’t actually a convex body. For instance, take zero divisor D = 0, then ∆(D)

consists of single point. However we will be almost exclusively interested in the case when
D is big, and then int(∆(D)) is indeed non-empty.

Lemma 1.9. Let W ⊆ H0(X,OX(D)) be a subspace. Fix a = (a1, . . . , ad) ∈ Zd and set

W⩾a =
{
s ∈ W | vY•(s) ⩾ a

}
, W>a =

{
s ∈ W | vY•(s) > a

}
.

Then
dim(W⩾a/W>a) ⩽ 1.

In particular, if W is finite dimensional then

#Im(W \ {0} ν−→ Zd) = dimW.

That is the number of valuation vectors arising from sections in W is equal to the dimension
of W .
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2 Volume of Okounkov body

Definition 2.1. Let L be a line bundle on X. The support of L consists of those non-negative
powers of L that have a non-zero section:

N(L) = N(X,L) =
{
m ⩾ 0 | H0(X,L⊗m) ̸= 0

}
.

The semigroup N(X,D) of a divisor D is defined analogously with a line bundle L = OX(D).

Definition 2.2 (Volume of a divisor). Let L be a line bundle on X. The volume of L is
defined to be the non-negative real number

vol(L) = volX(L) = lim sup
m→∞

h0(X,L⊗m)

md/n!
.

The semigroup N(X,D) and volX(D) of a divisor D is defined analogously with a line
bundle L = OX(D). Moreover, the divisor D on X is called big if there is a constant C > 0

such that
h0(X,OX(mD)) ⩾ C ·md

for all sufficiently large m ∈ N(X,D). That is, the lim sup above is in fact a limit

volX(D) = lim
m→∞

h0(X,O(mD))

md/d!
. (1)

Definition 2.3. Given any semigroup Γ ⊆ Nd+1, set
Σ = Σ(Γ) = closed convex cone (Γ) ⊆ Rd+1,

∆ = ∆(Γ) = Σ ∩ (Rd+1 × {1}).
Moreover for m ∈ N, put

Γm = Γ ∩ (Nd × {m}),
which we view as a subset Nd. We do not assume that Γ is finitely generated, but we will
suppose that it satisfies three conditions

(a) Γ0 = {0} ∈ Nd.

(b) ∃ finitely many vectors (vi, 1) spanning a semigroup B ⊆ Nd+1 such that Γ ⊆ B.

(c) Γ generates Zd+1 as a group.

Proposition 2.4. Assume that Γ satisfies above conditions. Then

lim
m→∞

#Γm

md
= volRd(∆),

where volRd denotes the standard Euclidean volume on Rd.

Proof. The number of integral lattice points inside m∆ can be regard as a polynomal with
respect to m ∈ N, called the Ehrhart polynomial. Its leading coefficient of degree d is the
volume of ∆ [BRS15, Lemma 3.19], that is

lim
m→∞

#(m∆ ∩ Zd)

md
= vol(∆).
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And since
Γm ⊆ m∆ ∩ Zd,

it follows that
lim sup
m→∞

#Γm

md
⩽ volRd(∆).

For the reverse inequality, assume to begin with that Γ is finitely generated. Khovanskii
[Kho92, Proposition 3] shows that in this case there exists a vector γ ∈ Γ such that

(Σ + γ) ∩Nd+1 ⊆ Γ.

here one uses that Γ generates Zd+1 as a group. But

lim
m→∞

#(Σ + γ) ∩ (Nd × {m})
md

= volRd(∆),

and hence
lim inf
m→∞

#Γm

md
⩾ volRd(Γ). (2)

This proves the theorem when Γ is finitely generated.

In general, choose finitely generated sub-semigroups

Γ1 ⊆ Γ2 ⊆ . . . ⊆ Γ,

each satisfying (a) – (b), in such a manner that ∪Γi = Γ. Then #Γm ⩾ #(Γi)m for all m ∈ N.
Writing ∆i = ∆(Γi), it follows by applying (2) to Γi that

lim inf
m→∞

#Γm

md
⩾ volRd(∆i)

for all i. But volRd → volRd(∆) and so (2) holds for Γ as well.

Lemma 2.5. If D is any big divisor on X, then the graded semigroup

Γ = ΓY•(D) ⊆ Nd+1

associated to D satisfies the three conditions (a) − (b).

Proof. See [LM09, Lemma 2.2].

Theorem 2.6. Let D be a big divisor on a projective variety X of dimension d. Then

volRd(∆(D)) =
1

d!
volX(D). (3)

Proof. Let Γ = Γ(D) be the graded semigroup of D with respect to Y•. Thanks to Lemma
2.5, we can apply Proposition 2.4 and hence

volRd(∆(D)) = lim
m→∞

#Γ(D)m
md

.

On the other hand, it follows from 1.9 that #Γ(D)m = h0(X,OX(mD)). By the definition at
(1), the limit on the right computes 1

d! volX(D).
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Example 2.7. Continuing the Example 1.7, the fact that ∆(D) is the standard simplex of
dimension d helps us compute directly the geometric volume of ∆(D)

volRd(∆(D)) = volume of standard d-simplex =
1

d!
.

For the right hand side of (3), we know that

h0(Pd,O(m)) =

(
m+ d

d

)
∼ md

d!
.

Therefore volX(D) = 1.

Proposition 2.8. Let D be a big divisor on X.

(i) For a fixed natural number a > 0,

vol(aD) = ad vol(D).

(ii) Fix any divisor N on X and any ϵ > 0. Then there exists an integer p0 such that
1

pd

∣∣vol(pD −N)− vol(pD)
∣∣ < ϵ

for every p > p0.

Proof. See [Laz04, Proposition 2.3.35].

Definition 2.9. (i) A Q-divisor D on X is an element of DivQ(X) := Div(X)⊗Z Q. We
represent a D as a finite sum

D =
∑

ciAi

where ci ∈ Q and Ai ∈ Div(X). By clearing denominators, we can also write D = cA

for a single rational number c and integral divisor A.

(ii) D is called effective if ci ⩾ 0 and Ai effective.

(iii) D is called big if there is a positive integer m > 0 such that mD is integral and big.

(iv) Two Q-divisors D1, D2 are numerically equivalent, written

D1 ≡num D2

if (D1 · C) = (D2 · C) for every curve C ⊆ X. We denote by N1(X)Q for Q-vector
space of numerical equivalence classes of Q-divisors. One can show that there is an
isomorphism

N1(X)Q = N1(X)⊗Q.

(v) D is called ample if ci ∈ Q+ and Ai is an ample Cartier divisor. Equivalently, D is
ample if there is a positive integer r > 0 such that r ·D is integral and ample.

(vi) We call ξ ∈ N1(X)Q an effective (big, ample) class if the representative element is
effective (big, ample).
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Definition 2.10 (Volume of Q-divisor). One can define volume of D by taking lim sup over
m for which mD is integral. However it would be quicker to choose some a ∈ N(D) for
which aD is integral, then set

vol(D) =
1

ad
vol(aD).

It follows from Proposition 2.8 (i) that this is independent of the choice of a.

Remark 2.11. Lazarsfeld and Mustata [LM09, Proposition 4.1] showed that the construction
of Okounkov body does not depend on the integral numerical equivalence class. Moreover,
if we regard ∆(_) as a function on Div(X), then ∆(_) satisfies homogenity condition. That
is, given a big divisor D on X and an integer p > 0, one has

∆(pD) = p∆(D).

Therefore the Okounkov body ∆(ξ) is well defined for any big rational class ξ ∈ N1(X)Q by
setting

∆(ξ) =
1

p
∆(pD) ⊆ Rd (4)

where D is a big Q-divisor representing ξ and p > 0 is an integer large enough so that pD
integral.

Proposition 2.12. For any big class ξ ∈ N1(X)Q, we have

volRd(∆(ξ)) =
1

d!
volX(ξ).

Proof. Choose a Q-divisor D representing ξ and an integer p such that pD integral. From
the definition of ∆(ξ),

vol(∆(ξ)) =
1

pd
vol(∆(pD)).

Also by the definition of volume of Q-divisor and Theorem 2.6,

volX(ξ) =
1

pd
volX(pD) =

d!

pd
volX(∆(pD)).

The assertion now follows.

Definition 2.13. Analogously, one can defines R-divisor be a element of DivR(X) =

Div(X) ⊗ R. Write D as a finite sum
∑

ciAi where ci ∈ R and Ai ∈ Div(X). It is
numerically trivial if and only if

∑
ci(Ai · C) = 0 for every curve C ⊆ X. The resulting

space of equivalence classes is denoted by N1(X)R. We also has an isomorphism

N1(X)R = N1(X)⊗R.

Definition 2.14. The big cone Big(X) ⊆ N1(X)R is the convex cone of all big R-divisor
classes on X. The pseudoeffective cone Eff(X) ⊆ N1(X)R is the closure of the convex
cone spanned by the classes of all effective R-divisors.
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Theorem 2.15. The big cone is the interior of the pseudoeffective cone and the pseudoef-
fective cone is the closure of the big cone:

Big(X) = int(Eff(X)), Eff(X) = Big(X).

Lemma 2.16. The pseudoeffective cone of X is pointed, i.e. if 0 ̸= ξ ∈ Eff(X) then
−ξ ∈ Eff(X).

3 Volume associated to a Nd-graded linear series

Fix divisors D1, . . . , Dρ on X whose classes form a Z-basis of N1(X). We may further
choose {Di} so that their classes are in Eff(X). The choice of the {Di} determines identifi-
cations

N1(X) = Zρ, N1(X)R = Rρ.

Observe that under this isomorphism, Eff(X) lies in Rρ
⩾0. Given a vector a⃗ ∈ Nρ, we write

a⃗ · D⃗ = a1D1 + . . .+ aρDρ for D⃗ = (D1, . . . , Dρ).

Definition 3.1. An Nρ-graded linear series W• on X associated to D⃗ consists of finite
dimensional subspaces

Wa⃗ ⊆ H0(X,OX (⃗a · D⃗)).

for each a⃗ = (a1, · · · , aρ) ∈ Nρ such that

(i) W0⃗ = C.

(ii) Wa⃗1
·Wa⃗2

⊆ Wa⃗1+a⃗2
for all a⃗1, a⃗2 ∈ Nρ.

The product in (ii) denotes the image of Wa⃗1
⊗Wa⃗2

under the homomorphism

H0(X,OX(a⃗1 · D⃗))⊗H0(X,OX(a⃗2 · D⃗)) → H0(X,OX((a⃗1 + a⃗2) ·D)).

Thus, above conditions is equivalent to the condition that R(W•) = ⊕Wa⃗ be a graded
C-subalgebra of the section ring

R(D⃗) =
⊕
a⃗∈Nρ

H0(X,OX (⃗a · D⃗)).

We define the support Supp(W•) ⊆ Rρ of W• as the closed convex cone spanned by all
a⃗ ∈ Nρ such that Wa⃗ ̸= 0.

Definition 3.2. The Nd-graded semigroup of W• with respect to a flag Y• is the additive
sub-semigroup of Nd ×Nρ given by

Γ(W•) =
{
(ν(s), a⃗) | 0 ̸= s ∈ Wa⃗

}
.

Now let Σ(W•) ⊆ Rd ×Rρ be the closed cone spanned by Γ(W•) and set

∆(W•) = Σ(W•).
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Definition 3.3. For an Nρ-graded linear series W• on X and a⃗ ∈ Nρ, we define the volume
function volW• : Nρ → R+ of W• as

volW• (⃗a) = lim sup
k→∞

dimC(Wk·⃗a)

kd/d!
.

With the help of convex geometry and semigroup theory, Lazarsfeld and Mustata [LM09,
Corollary 4.20] show that the formal properties of the global volume function persist in
the multigraded setting under very mild hypotheses. Precisely the function a⃗ 7→ volW• (⃗a)

extends uniquely to a continuous function

volW• : int(Supp(W•)) → R+.

which is homogeneous, log-concave of degree d.

Definition 3.4. Let a ∈ Nρ. An Nρ-graded linear series W• on X has bounded support
with respect to a⃗ if

Supp(W•) ∩
{⃗
b | a⃗ · b⃗ = 1

}
is bounded. The Reeb cone of Nρ-graded linear series W• on X is

C =
{
a⃗ ∈ Nρ | ⟨⃗a, b⃗⟩, ∀⃗b ∈ Supp(W•) \ {0}

}
.

A vector a⃗ ∈ C is called Reeb vector field. For such (W•, a⃗) where a⃗ is a Reeb vector field,
we set

h0(Wm,⃗a,•) =
∑
b⃗·⃗a=m

dim(W
b⃗
)

for each m ∈ N, it is a finite sum if W• has bounded support. Finally, we define the volume
of W• as

vol⃗a(W•) = lim sup
m→∞

h0(Wm,⃗a,•)

md+ρ−1/(d+ ρ− 1)!
.
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